0
喜欢
0
书签
声明论文
Combining Visualization and Statistical Analysis to Improve Operator Confidence and Efficiency for Failure Detection and Localization   
摘  要:   Web applications suffer from software and configuration faults that lower their availability. Recovering from failure is dominated by the time interval between when these faults appear and when they are detected by site operators. We introduce a set of tools that augment the ability of operators to perceive the presence of failure: an automatic anomaly detector scours HTTP access logs to find changes in user behavior that are indicative of site failures, and a visualizer helps operators rapidly detect and diagnose problems. Visualization addresses a key question of autonomic computing of how to win operators' confidence so that new tools will be embraced. Evaluation performed using HTTP logs from Ebates.com demonstrates that these tools can enhance the detection of failure as well as shorten detection time. Our approach is application-generic and can be applied to any Web application without the need for instrumentation
发  表:   International Conference on Autonomic Computing  2005

论文统计图
共享有15个版本
 [展开全部版本] 

Bibtex
创新指数 
阅读指数 
重现指数 
论文点评
还没有人点评哦

Feedback
Feedback
Feedback
我想反馈:
排行榜