0
喜欢
0
书签
声明论文
Evolving Dynamics in an Artificial Regulatory Network Model   
摘  要:   In this paper artificial regulatory networks (ARN) are evolved to match the dynamics of test functions. The ARNs are based on a genome representation generated by a duplication / divergence process. By creating a mapping between the protein concentrations created by gene excitation and inhibition to an output function, the network can be evolved to match output functions such as sinusoids, exponentials and sigmoids. This shows that the dynamics of an ARN may be evolved and thus may be suitable as a method for generating arbitrary time-series for function optimization.
发  表:   Parallel Problem Solving from Nature  2004

论文统计图
共享有11个版本
 [展开全部版本] 

Bibtex
创新指数 
阅读指数 
重现指数 
论文点评
还没有人点评哦

Feedback
Feedback
Feedback
我想反馈:
排行榜