0
喜欢
0
书签
声明论文
Order and structural dependence selection of LPV-ARX models using a nonnegative garrote approach   
摘  要:   In order to accurately identify linear parameter-varying (LPV) systems, order selection of LPV linear regression models has prime importance. Existing identification approaches in this context suffer from the drawback that a set of functional dependencies needs to be chosen a priori for the parametrization of the model coefficients. However in a black-box setting, it has not been possible so far to decide which functions from a given set are required for the parametrization and which are not. To provide a practical solution, a nonnegative garrote approach is applied. It is shown that using only a measured data record of the plant, both the order selection and the selection of structural coefficient dependence can be solved by the proposed method.
发  表:   Conference on Decision and Control  2009

共享有3个版本

Bibtex
创新指数 
阅读指数 
重现指数 
论文点评
还没有人点评哦

Feedback
Feedback
Feedback
我想反馈:
排行榜