0
喜欢
0
书签
声明论文
Algebraic Myhill-Nerode Theorems   
摘  要:   The Myhill–Nerode Theorem states that the equivalence relation ∼L given by a language L has finite index if and only if L is accepted by a finite automaton. In this paper we give several generalizations of the theorem which are algebraic in nature. In our versions, a finiteness condition involving the action of a semigroup on a certain function plays the role of the finiteness of the index of ∼L, while various algebraic structures including algebras, coalgebras, and bialgebras play the role of the finite automaton which accepts the language. We develop additional theory concerning the algebraic objects which so arise, and study the minimal ones.
发  表:   Theoretical Computer Science  2011

共享有3个版本

Bibtex
创新指数 
阅读指数 
重现指数 
论文点评
还没有人点评哦

Feedback
Feedback
Feedback
我想反馈:
排行榜